روش های حجم های متناهی برای حل معادلات دیفرانسیل

پایان نامه
چکیده

روش حجم متناهی یک روش گسسته سازی است که برای حل عددی انواع معادلات دیفرانسیل با مشتقات جزئی از قبیل بیضوی،سهموی وهذلولوی به کار می رود.در این پایان نامه اجزای مختلف شبکه ها،انواع شبکه بندی ها برای روش حجم متناهی در یک ودر دو بعد معرفی می گرددسپس روش حجم متناهی برای معادلات دیفرانسیل از نوع سهموی و هذلولوی خطی مرتبه اول بیان می گردد،در هر مورد نیز برآورد خطا مشخص می شود وسپس همگرایی روش حجم متناهی برای معادلات مذکور نشان داده می شود نهایتا روش های حجم متناهی را برای معادلات گرما به کار می بریم و نتایج عددی نیز محاسبه شده است.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روش های عناصر متناهی برای حل معادلات دیفرانسیل کسری

معادلات دیفرانسیل کسری،بخصوص معادلات دیفرانسیل جزئی کسری کاربردهای زیادی در پردازش انتشار،الکترومغناطیس و علم مواد دارند.دراین پایان نامه روش عناصر متناهی را برای حل معادلات دیفرانسیل جزئی کسری زمان در نظر می گیریم.وجود و یکتایی جواب با استفاده از لم لکس-میلگرام اثبات می شود.یک روش گام زمانی مبنی بر یک قاعده انتگرال گیری معرفی می شود.روش تمام گسسته با استفاده از روش عناصر متناهی مطرح می شود و ت...

15 صفحه اول

ساختن روش‌های تفاضلات متناهی مبتنی بر توابع پایه شعاعی و استفاده از آنها برای حل معادلات دیفرانسیل با هندسه دلخواه

In this paper we, obtain the weight of radial basis finite difference formula for some differential operators. These weights are used to obtain the local truncation error in powers of the inter-node distance and the shape parameter of radial basis functions. We show that for each difference formula, there is a value of the shape parameter for which RBF-FD formulas are more accurate than the cor...

متن کامل

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

روش حجم محدود برای حل معادلات دیفرانسیل جزیی سهموی

هدف از انجام عمل گسسته سازی تبدیل یک یا چند معادله دیفرانسیل با مشتقات جزیی به یک دستگاه معادلات جبری است . حل این دستگاه ها باعث تولید یک مجموعه از مقادیری می شود که متناظر با جواب معادلات دیفرانسیل جزیی در برخی از موقعیت های مکانی یا زمانی است . فرآیندهای گسسته سازی به دو گام گسسته سازی دامنه جواب و گسسته سازی معادله تقسیم می شوند . گسسته -سازی دامنه جواب، یک توصیف عددی از دامنه محاسبه ای را ...

15 صفحه اول

روش گسسته عناصر متناهی برای حل معادلات دیفرانسیل تأخیری

در این پایان نامه روش گالرکین ناپیوسته بر روی معادلات دیفرانسیل تأخیری خطی مرتبه اول را بررسی می کنیم.که از چندجمله ای های رادو به عنوان پایه استفاده کرده ایم و با استفاده از آنالیز تعامد بر روی هر بازه نتایج فوق همگرایی این روش را در نقاط گره ای به دست می آوریم.

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023